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SUMMARY 

The Van Leer method for the computation of convective fluxes is extended to two-phase flow. By preventing 
spurious undershoots and overshoots, the scheme preserves physical realism while maintaining high-order 
accuracy. This is particularly important for two-phase flows, since phase exchange terms are typically a function of 
volume fraction products and numerical diffusion can incorrectly mix the two phases. The scheme described here 
is constructed to guarantee that the sum of the volume fractions is always unity and that the volume fiactions are 
always greater than or equal to zero. Various test problems are computed to demonstrate the accuracy of the 
method and to show how the scheme might be incorporated in existing computational methods. In addition to 
multiphase flow applications, setting equal phase velocities results in a volume marker scheme that is well suited to 
single-phase interface tracking problems. 

KEY WORDS: two-phase; Van Leer; convective transport; volume fractions; momentum; interface tracking 

INTRODUCTION 

There are few known exact solutions of the governing equations of two-phase flow and those that are 
known represent simple physical systems that have limited practical application. Consequently, 
investigators of two-phase flow fall back on experimentally determined correlations and more recently 
solutions of the governing equations obtained by computer. This paper addresses the problem of 
minimizing numerical diffusion associated with numerical representation of the convective terms in the 
two-phase governing equations. It is well known that numerical schemes that discretize the convective 
terms with an upwind procedure suffer from excessive numerical diffusion; the use of a higher-order 
scheme can substantially reduce this problem but can also lead to oscillations causing non-physical 
undershoots or overshoots. The implication of these results for two-phase flow calculations is 
particularly significant for the computation of the convection of phase volume fraction (mass). If an 
upwind procedure is used for volume fraction advection, then numerical diffusion tends to smear 
gradients of volume fraction. Typical two-phase exchange terms involve the product of volume 
fractions, so smearing produces finite values in those exchange terms, leading to numerically induced 
source terms and consequent inaccuracies throughout the calculation. If a naive higher-order scheme is 
used for volume fraction advection, then non-physical oscillations might appear in the volume fraction 
profiles, as well as overshoots or undershoots, so that volume fractions may be less than zero or greater 
than unity, which again would produce unphysical phase exchange source terms. 

This paper describes the use of the Van Leer method' for the computation of convective fluxes as 
applied to the convective transport of phase volume fraction (mass) and phase momentum in two-phase 
flow. The Van Leer scheme prevents spurious oscillations while maintaining a high order of numerical 
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accuracy. Application of the Van Leer scheme to volume fraction advection is not straightforward, 
since the individual phase volume fractions are linked by the relation fi +fi = 1, and for the 
incompressible calculations considered here, care must be taken to compute velocity and pressure 
fields that simultaneously satisfy joint continuity and momentum equations. The scheme is described 
in two dimensions and may be easily extended to three dimensions. 

MATHEMATICAL EQUATIONS FOR SOLUTION 

For the present purposes the following set of two-phase flow equations is employed to demonstrate the 
new solution procedures: 

where i = 1 or 2, the first or second phase. The phase variables are volume fractions, fi, n- and y- 
direction velocities u; and v; respectively, and a pressure shared by both fluids, p .  There are seven 
independent variables and six equations; the seventh equation to close the set is fi +fi = 1. The 
momentum equations (1) and (2) also contain x- and y-direction body force terms such as gravity and 
F; is a drag coefficient which satisfies F1 = -Fz. 

NUMERICAL SOLUTION PROCEDURE 

The governing equations presented above are a coupled set of partial differential equations for which 
there exist several solution  procedure^.^)^ The present work solves transient problems and uses an 
explicit approach that serves to demonstrate the new transport procedures while being simple to code 
and validate. The governing equations are solved by a fractional time step technique which at each time 
step performs an advection calculation followed by a Lagrangian source term update. The Lagrangian 
update is presented next and this is followed by a detailed description of the advection step for volume 
fraction and momentum. 

Lagrangian momentum source term updates 

velocities: 
Discretization of the Lagrangian momentum equations gives the following relations for phase 



CONVECTIVE TRANSPORT IN TRANSIENT TWO-PHASE FLOW 207 

Extension to quadratic forms is straightforward and described later. The n + superscript refers to a 
value from the advection calculation, while the asterisk denotes an intermediate value that does not 
necessarily satisfy continuity. The subscripts refer to spatial position, as shown in Figure 1, and a 
staggered arrangement of momentum and mass cells is used. Body force terms are constant and taken 
as components of gravity in later test problems. The momentum cell values for volume fractionsc:' 
andf;:+' may be taken in several ways but should be the same as used in the pressure correction 
equation; here an upwind formulation is used based on the face cell velocity. A desirable constraint in 
two-phase flow is that the net volume flux should be conserved, i.e. 

SV, - SV, + sv, - sv, = 0, ( 5 )  
n+l n+l n + l  n+l with SV, = AtAy(ul,e A,, + ~ 2 , ~  where n + 1 refers to 

a new time level value. This is the two-phase analogue of the single-phase situation, but if the 
) and SVn = Ath((:lf;t:l + 

velocities from (4) are used in (9, there is no guarantee that the net volume flux will be zero. 
Following the single-phase SIMPLE4 practice, phase velocity corrections are defined so that 

pressure correction. By substituting these expressions for n + 1 into equations (4) and then subtracting 
(4) evaluated with the asterisk, we arrive at the velocity influence equations 

#+l - - u ~ , ~  * + A u ~ , ~  and I(':' = vtn + Avlyn and the new pressure p$+l =pF + App, where Ap is a 

At At 
AUi,e = __ ( App - ApE), AVip = - (App - A m ) ,  

P i h  Pi AY 
with similar expressions for the west and south faces. Now substituting these expressions into (5) gives 
a Poisson equation for pressure corrections, 

apApp + aEApE + awApw + a N A m  + asAps = -D, (7) 
with, for example, 

aE = - AtAy (K qef1 + fn" 2) , 

and D evaluated as (5 j using the asterisked velocity values, with face volume fractions taken as upwind 
values. The Poisson equation (7) is then solved and the pressure corrections are inserted into (6) to 
provide updated n + 1 velocities and pressures that simultaneously satisfy the momentum equations 
(4) and net volume flux (5). The Poisson solver used in this work is a Gauss-Seidel method iterated 
until the sum of the absolute mass residuals (the right side of (7)) over all the cells is less than some 

Ax 
f----) 

N 

n 

d 
Figure 1 .  Cartesian control volume showing neighhouring East, West, North and South cells and east, west, north and south 

faces 
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prescribed value. This two-phase calculation procedure closely resembles the single-phase one, but 
here no iteration is required because the source update momentum equation is linear; if we had implicit 
convection or diffusion terms or a quadratic velocity-dependent drag coefficient, then iteration would 
be needed. 

Transport procedures 

The two-dimensional transport procedures are split into an x-step followed by a y-step; this is 
followed by a y-x calculation at the next time step. This fractional splitting simplifies the calculation to 
two one-dimensional updates and lends itself to high-order calculation of cell fluxes with the Van Leer 
method. However, in a two-phase application, special care must be taken to conserve net volume, the 
completeness of the volume fractions and their positivity. The next subsection describes the advection 
of phase volume fraction (or phase mass for this incompressible case) within these constraints and is 
followed by a compatible procedure for phase momentum. 

Advection of phase volumefiaction. The following describes the advection of phase volume over a 
time step; for an incompressible two-phase flow this procedure may also be interpreted as advection of 
phase mass, while for a single-phase interface tracker it is the advection of the marker fluid. The 
continuity equations (1) are represented by the finite volume balance equations 

x-step f;:pV; =f;:V; + SV,,, - c ~ V ; , ~ ,  (8) 

These balance equations relate the intermediate (asterisked) and new (n + 1) phase volumes to the 
phase volumes fluxed over the cell faces. Attention is focused on the x-step; the y-step proceeds in a 
similar fashion using the latest asterisked values. 

Phase volume fluxes are calculated as 6 V;,e = AyAtiii,, ?;,,, where the tilde denotes cell face values 
computed as below. An intermediate cell volume VG is computed by adding the x-step phase volume 
equations (8) to give 

where SV, and SV, are the net volumes fluxed over the east and west faces respectively. Since 
f;lp +h:p = 1, this ensures that KP +GP = 1. Similarly, addition of the phase volume equations for 
the y-step (9) yields 

If the net volume fluxes are chosen to be those used in the pressure iteration (7), then since the joint 
continuity equation was iterated to convergence, we have SV, - SVe + SV, - SVn = 0; using this 
relationship in (10) and (1 1) gives V;+l = V;, so the net cell volume is conserved, but also along the 
way we have satisfiedfl? +Gp = 1 andf;lp" +f;lp" = 1. It remains to calculate the individual phase 
volume fluxes for equations (8) and (9). 

The x-step phase volume fluxes are chosen to satisfy 

AyAt(61,eji,e + ; 2 , e f 2 , e )  = SVe (12) 

and similarly for west face fluxes. The net volume flux SV, is saved from the pressure iteration and so 
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is available. To satisfy (12), the cell face velocities are calculated as i i ~ , ~  = u ; , ~  + Au and 
i i ~ , ~  = u; + Au, with the velocity adjustment Au determined to satisfy (12) as 

The face valuesfi,, andf;,e are determined as the average value on the face for a profile advected 
across the face at speeds G I , ,  and ii2,e respectively; see Figure 2. The result forfi,e is 

where 
The derivative is evaluated following Van Leer as 

= 6V,,e/V;,upwind =A,eVGtind and upwind values are taken according to the sign of ~ 1 , ~ .  

where 

1 if Ae and Aw > 0, 
S =  -1  i f A e a n d A w < O ,  { 0 otherwise. 

Aw = f ( f p  -fi lw, Ae = f ( f E  - f ( f p ,  

Van Leer limiters have been used in (1 5) to limit the gradient of the volume fraction profile, thereby 
preventing spurious oscillations. The representation of the gradient of the cell profile D determines the 
accuracy of the representation. 

If D = 0, the cell profile takes a constant upwind value and so this scheme is subsequently referred 
to as 'first-order'. 

If D = (Ae + A w ) / 2 k ,  the cell profile is assumed linear. The gradient is computed with a central 
difference and so this scheme is subsequently referred to as 'second-order'. 

Following Youngs,' if 

)Aw/3 + (2 - I~l ,e l )Ae/3 

(1 + I~l ,e l )Ae/3 + (2 - I~l ,e l )Aw/3 

for E l , e  2 0, 

for E l , e  < 01 

0 VOlunle lluxcd 

f l  
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cell boundary 
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Figure 2. Phase volume fluxed over east face 
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this scheme is referred to as 'third-order'. If I E I , ~ ~  = i, this third-order scheme reduces to the central 
difference scheme, so we might expect the two schemes to be of similar accuracy. 

To complete this phase volume fraction scheme, the appearance of Au via ~ 1 , ~  in equation (14) for 
f; ,e means that the evaluation of Au in equation (1 3) must be iterated with equation (14); in the present 
work iteration continued until IAukfl - AukI 5 

In summary, the x-step phase volume fraction computation for a cell is performed as follows: 

1.  Compute the net east volume flux using the same procedure as in the pressure iteration. 
2. Initialize Au = 0. 
3. Compute 3 ,e using ( 1  4) and (1 5) and similarly for 
4. Compute a new Au using (13) and return to step 3 until converged. 
5. Use iii,e andx', to compute phase volume fluxes SV,,e. 
6. Insert SV, ,e  and previous computed west volume fluxes into (8) for the new volume fractionsfi';. 

The y-step proceeds in a similar fashion using v-velocities and resulting in updated phase volume 
fractions A::'. 

Advection of phase momentum. First- and second-phase advections are independent, unlike the 
volume fractions, and so it suffices to detail only the first phase; the second being identical but with 
subscript 1 replaced by subscript 2. Since the phase densities are constant in this work, they have been 
dropped from the following momentum equations. As before, the update is split into an x-step followed 
by a y-step as follows: 

where the subscripts refer to the staggered u-velocity cell and the tilde refers to values taken on 
the cell faces; in particular, i i l , ~  is the mean value of u1 on the east face of the cell during the 
time step. The superscript n + indicates that this is only a partial update to be followed by the 
Lagrangian force calculation. The phase volumes and fluxes are calculated as 
?'r,e = ( V;,p f Vr,E)/2 and ~ V I , E  = ( ~ V I , ,  + b V 1 , ~ , ) / 2  respectively, where the scalar phase 
volumes and fluxes are available from the volume fraction update described above. The 
intermediate phase volume is calculated as 

V;,e = + 6 Vl ,P - 6 Vl ,E , 

which, as in the volume fraction calculation, ensures yiy;lJ2 = ye. The calculation of UI ,E uses a 
similar high-order approximation to that used for volume fractions: 

where E ~ , E  = 6 V l , ~ / V ; t ~ ~ ~ ~ ~ ~ ,  with upwind values determined by the sign of E I , E .  The dertivative is 
found from 
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with 

1 if Ap and AE > 0, 

S =  -1 if ApandA~ < O ,  { 0 otherwise. 
A P  = u;,$ - uy,wl AE = uy,ee - 

Again Van Leer limiters have been applied to prevent spurious oscillations. 

similarly formulated ‘first-order’, ‘second-order’ and ‘third-order’ schemes. 
As for the phase volume, the cell velocity profile gradient D may take various forms yielding 

In summary, the x-step phase momentum computation for a cell is performed as follows. 

1. Compute momentum cell volumes and volume fluxes using values available from the volume 

2. Compute cell face velocities using equation (1 8). 
3. Compute intermediate cell phase momentum using equation (16). 

fraction calculation. 

The y-step proceeds in a similar fashion using v-velocities and resulting in updated cell phase 
momentum. 

Limitations and extensions of the advection schemes. The explicit procedures above are restricted as 
follows. 

(i) The Courant condition E < 1 prevails, limiting the time step by the cell size and velocity. 
(ii) The formulation employs a uniform grid. This restriction may be removed by taking an 

appropriate representation of the cell profile gradient in equations (15) and (19). 
(iii) Fixed flux boundary conditions (either zero or non-zero) may be applied by assigning boundary 

volume fluxes or momentum fluxes in equations (8) and (9) or equations (16) and (17). 
Similarly, cyclic boundary conditions associate values required after the last cell with the first 
and before the first cell with the last. 

(iv) Single-phase advection may be readily computed with these procedures by setting u1 = u2 and 
v1 = v2. The velocity correction Au of equation (1 3) is then zero and so no iteration is required; 
the volume fraction may now be used as a fluid marker as will be demonstrated below. In the 
momentum advection algorithm, phase mass and phase mass flux are exchanged for fluid mass 
and fluid mass flux in a single-phase calculation. 

TEST PROBLEMS 

To demonstrate the new transport procedures, several test problems are described and then solved. The 
chosen problems have been divided into single-phase problems where the fluid marker technique can 
be applied, and two-phase problems where there is slip between the phases and the two-phase flow 
procedures are appropriate. Each problem is solved using combinations of first-, second- and third- 
order schemes as listed in Table I. 

Each problem description includes a brief introduction to the problem, terms in the governing 
equations, initial and boundary conditions and expected results. This is followed by details of the 
computation such a grid, time step, initial values, convergence and iteration parameters. The results are 
then presented and discussed. All the problems have been solved on a 486DX33 PC computer. Typical 
run times for each problem are given in Table 11. 
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Table I. Test cases for all test problems 

Case Volume Fractions Momentum 

1st order 1st order 
2nd order 1st order 
2nd order 2nd order 
3rd order 3rd order 

Single-phase test problems: Rayleigh-Taylor instability 

Problem description 
The problem is to predict the growth of a single Rayleigh-Taylor instability6 at the interface of 

different density fluids. Initially a heavy fluid (p2) overlays a lighter one ( p , )  and gravity drives the 
growth of a single-wavelength perturbation. The problem is depicted in Figure 3. To give the problem 
an element of physical realism, the densities and dimensions are those from the Rayleigh-Taylor 
mixing experiments of Andrews and Spalding,’ where brine and water were used as the two fluids. For 
the purposes of this problem the two-dimensional Euler equations (1) and (2) for a single phase 
describe the growth of the instability with body forces B, = 0.0 and By = pg, so the y-axis is aligned 
with the vertical. 

The initial conditions are 

p = pz = 1.1 x lo3 kg m-3 (brine) for y > Y L / ~  +A0 cos(b x), 

p = p1 = 1.0 x lo3 kg mP3 (water) for y 5 YL/2 + A 0  cos(h x), 

where 0 5 y 5 YL (= 0.36 m) and 0 5 x 5 X, (= 0.25 m). The initial amplitude and wave number of 
the perturbation are A0 = l/lOO and h = 2n/ l  respectively, with l = XL. The initial values for 
velocities are zero and pressure takes a hydrostatic distribution. 

The boundary conditions are as follows: at x = 0 and x = XL, u = 0; at y = 0 and y = YL, v = 0. 
In the absence of viscosity, linear stability analysis* gives the amplitude A of the perturbation 

growing as A = A0 cosh(nlt), with the exponential growth rate given by 

n2--- 2ng PI - P2 
1 P1 f P 2  

The e-folding time l i n ~  for this problem is 0.292 s. 

Table 11. Typical run times (seconds) for each problem 

Problem 
~ 

Test case 2 

2D Rayleigh-Taylor 
2D Kelvin-Helmholtz 
1 D sedimentation 
2D unstable mixing 

253 
107 
46 

105 
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Computational details 
The volume fraction calculation was employed as a marker for the fluid densities, so that the local 

density was calculated as p =f ip l  +f2p2. For convenience the fluid densities were set as p l  = 1 .O and 
p2 = 1.1. A reduced pressure form of the gravitational term has been used9 with By = (p2 - p l ) g .  

For the tests reported here, the computational grid comprised 26 uniformly spaced cells in the y- 
direction and 18 uniformly spaced cells in the x-direction. The problem has been run to a simulation 
time of 2 s with 100 time steps of 0.02 s and with a mass residual tolerance of Preliminary work 
showed that this time step gave results independent of time step and mass residual. A check of the cell 
Courant number showed a maximum of 0.6, in keeping with the expected maximum value of 1.0. 

The initial density distribution was set via the volume fractions as 

E 

1 - E if y < Y L / ~  +Ao cos(kox), 
if y > Y L / ~  +A0 cos(k+x), 

where E = 
volume fraction for the fluid in the cell. 

For cells that contain the perturbation, the perturbation is integrated to provide a 

Results 
Figure 3 shows the calculated time history development of the instability as indicated by the fluid 

marker using the second-order volume fraction and momentum schemes. The figure shows symmetry 
about the vertical centreline, implying that the velocity fields must also be symmetrical. The amplitude 
of the perturbation was measured at t = 0.5 s using the 0.5 volume fraction contour and assigned a 
value of 5.08 cm. This corresponds to an e-folding time of 0-29 s, in good agreement with the 
expected value of 0.292 s. 

Figure 4 shows the relative merits of the four different schemes of Table I. Comparison of the 
various schemes shows that using a second- or third-order scheme substantially improves the accuracy 
of the calculation, resulting in significantly more roll-up of the perturbation and the smallest spacing 
between contours. It is useful to note the significant increase in roll-up upon increasing the order of the 
momentum calculation; this point is reinforced in the next problem. However, there is little 
improvement to be gained by going from second to third order. 

Single phase test problems: Kelvin-Helmholts instability 

Problem description 
Kelvin-Helmholtz instability is another hdamental  fluid flow instability,* and may occur when two 

fluid layers flow past one another. If the interface between the fluid streams is perturbed, the 
perturbation grows as a Kelvin-Helmholtz instability, rolling up the interface. The problem then is to 

I /  11 = ".O .- _ . ~  

I = 0.5 s I= 1 . 0 s  t = 1 . 5 s  t = 2.0 s 

Figure 3. Development of a Rayleigh-Taylor instability calculated using second-order volume fraction and momentum schemes 
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A) 1st order volume fractions 
1st order momentum 

B) 2nd order volume fractions 
1st order momentum 

f i  LO.8 

h d  order volume fractions D) 3rd order volume fractions 
2nd order monienlum 3rd order momentum 

Figure 4. Computed Rayleigh-Taylor instability at t = 2 s calculated with different schemes 

predict the growth of a single Kelvin- Helmholtz instability in a fluid of uniform density and the 
problem specification is close to that of Rosenhead." 

The two-dimensional Euler equations are used to simulate the instability; however, there are no body 
forces and the fluid has a uniform density p1 = p2 = 1. 

The initial conditions are as follows. The fluid velocities are u = ii + u' and v = d, where ii is the 
stream velocity given by 

-u, 

u, 

for 0 < y < Y L / ~  and 0 < x d XL, 
for Y L / ~  < y < YL and 0 < x d XL, 

6 = {  

with u, = 1 .O m s-l and XL = YL = 1 m. The velocity perturbations to the steady state are 
u' = -dq/dy and d = dq/dx, where the streamfimction is given by 

with ic = 0.2u,, k = 2 x / X ~  and 6, = y - YL/2. In the calculations that follow, the volume fractions 
mark the fluid that initially moves to the right, ii > 0, as fi = 0.0 and that to the left as f i  = 1 .O. 

The boundary conditions are as follows. At y = 0 and y = YL, v = 0. Cyclic boundaries prevail in 
the x-direction, so that u(x = 0) = u(x = XL). The streamfunction has been constructed to satisfy 
these boundary conditions. 
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Computational details 
A total of 256 square cells were used to cover the computational domain, 16 in each direction. The 

time step used was 0.01 s to ensure that the Courant number E = umt/Ay was less than 0.5. 
The stream velocity was set as defined above but with a linear velocity gradient across the cells 

straddling the line separating the fluid streams. This was found to promote the development of the 
instability. The velocity perturbations on the east and north faces of a computational cell are set 
respectively as 

where ‘ne’ denotes the northeast corner of a cell. This practice ensured that the velocity perturbations 
satisfied continuity. A zero initial pressure field was set and an initial volume fraction of 

Boundary conditions were specified as in the problem statement. 
Convergence of the pressure iteration calculation was determined by setting a total mass residual of 

lop4; a residual check similar to the one for the Rayleigh-Taylor problem was performed and found 
this tolerance satisfactory. 

Results 
Figure 5 shows the calculated growth of a Kelvin-Helmholtz instability using second-order volume 

fractions and momentum. An expected symmetry between the top and bottom tongues as they are 
swept downstream may be observed. Figure 6 provides a comparison of the different schemes. The 
figures reaffirm that the second- or third-order schemes give the most accurate results (most structure 
and closest contours). Comparison of the results using first-order momentum with those using second- 
order momentum reveals that numerical diffusion in the calculation of momentum transport has the 
effect of damping out the growth of the instability, thus demonstrating the need for an accurate 
calculation of momentum transport. The computed roll-up shape resembles that computed by 
Rosenhead;’O a discrepancy in the time of roll-up may be attributed to the initial flat marker interface in 
the present calculations (Rosenhead perturbed vortices on the interface by 0.1 m). 

-- __ 
t* = 0 25 1 * = 0 5  t * = O 7 5  t * = 1 0  

Figure 5 Development of a Kelvin-Helmholtz instability calculated using second-order volume fraction and momentum 
schemes for non-dimensional t m e  t* = u , t / l  
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A) 1st order volume fractions 
1st order momentum 

B) 2nd order volume fractions 
1st order momentum 

C )  2nd order volume fractions 
2nd order momentum 

D) 3rd order volume fractions 
3rd order momentum 

Figure 6.  Computed Kelvin-Helmholtz instability at u,r/i = 1 calculated with different schemes 

Two-phase test problems: One-dimensional sedimentation 

Problem description 
The physical situation comprises two fluids of differing densities initially lying at rest with the heavy 

fluid (p  = p2) overlying the light fluid (p  = pl); see Figure 7. Driven by gravity, the heavy fluid 
sediments through the light fluid, forming a mixed region that expands to fill the remaining volume. 
This physical situation is that explored in experiments by Andrews and S ~ a l d i n g . ~  Their fluids and 
dimensions are adopted here: p2 = 1.1 x lo3 kg m-3 (brine), p1 = 1 , O  x lo3 kg mP3 (water), with 
the height of the domain as 0.36 m. Because the densities are close, a comparison with an analytical 
solution is possible; also, since the results are sensitive to numerical diffusion in the volume fraction 
equations, this problem is a good test of the volume fi-action transport equations. 

In this one-dimensional two-phase problem we solve the y-direction continuity and momentum 
equations (1) and (3) with the u-velocities zero (identical results were obtained upon solving the 
problem in the x-direction). The body force terms are B1, = plg  and B2, = pzg. The interphase 
friction term is taken as F = C j 3 p l r  with Cf = 20.0. 
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The initial conditions are 

1 for 0 6 y < Y L / ~ ,  
f i = {  0 for YL/2 < y < YL, 

v1 = v2 = 0 for O < y < YL/2, 

with- YL = 0.36 m. Pressure takes a hydrostatic distribution. 
The boundary conditions are as follows: at y = 0 and y = YL, V I  = v2 = 0.  
Andrews' gives an approximate analytical solution for this problem. The following calculations 

compute from the initial position to a time of 2.4 s, sufficient for the volume fraction profile to spread 
across the domain. The solution for this period is 

?(1 1 - dY/v,t) for - v,t < y < v,t, 
f i = { l  for S, < -v,t, 

0 for 6, > v,t, 

where 6, = y - Y L / ~  and v ,  is a terminal velocity given by 

vc€ = - d P 2  - PI)/CfPlr 

which takes a value of 4.905 x m s-l and gives a mixing width 2v,t of 0.2354 m. 

Computational details 
As in the Rayleigh-Taylor problem, a reduced pressure formulation was used to promote 

convergence of the pressure iteration; the body force terms used were B1, = 0.0 and 
B2$ = ( p 2  - pl)g.  A total of 40 uniformly spaced cells span the computational domain and a time 
step of 0.02 s was used to ensure the Courant condition v,At/Ay < 0.5. 

Zero initial velocities and a hydrostatic pressure were set. The initial volume fractions were 

1 - 1 0 - ~  for 0 < y < Y L / ~ ,  

for Y L / ~  < y < YL, { 10-3 
fi := 

with zero mass and momentum fluxes across the upper and lower boundaries. 

lop4; a residual check was performed and found this tolerance satisfactory. 
Convergence of the pressure iteration calculation was determined by setting a total mass residual of 

Results 
Figure 7 shows the volume fraction profiles at t = 0, 1.2 and 2.4 s calculated using second-order 

volume fraction and momentum formulations. As expected from the analytical solution, a linear 
volume fraction profile expands through the domain. The figure shows the analytical solution as a solid 
line and a comparison of computed with analytical results reveals excellent agreement. Figure 8 
compares different schemes at t = 2.4 s and shows that using the first-order upwind scheme for 
volume fractions introduces significant numerical diffusion into the solution that is strongly 
reminiscent of experimental mix profiles," but here it is a numerical artefact. To see better the 
difference between calculated and exact solutions, Figure 9 plots the width of the mixing region, as 
measured by the distance betweenfi = 0.05 a n d 5  = 0.95, against time for the first-order, second- 
order and exact solutions. The figure reveals that the second-order scheme accurately follows the 
development of the mix width, whereas the first-order scheme overpredicts by approximately 20% at 
the end of the calculation. 
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Figure 7. Computed one-dimensional sedimentation calculated using second-order volume fraction and momentum schemes 
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Figure 8. One-dimensional sedimentation first-phase volume fraction profiles at t = 2.4 s calculated with different schemes 
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Figure 9. Growth of sediment mixing width computed with different schemes 

Two-phase test problems: Overturning in a tilted rectangular cavity 

Problem description 
The physical situation envisaged for this two-phase test problem resembles that of the Rayleigh- 

Taylor problem. Initially a heavy fluid ( p  = p2)  overlies a lighter fluid ( p  = pl) in an enclosed 
rectangular cavity; see Figure 10. It is then supposed that the cavity is instantaneously tilted without 
imparting any motion to the fluids. As a result the gravitational field is angled in the frame of reference 
of a level initial interface, causing an overturning motion to develop. Superimposed on the large-scale 
overturning motion is an interpenetration of the two phases due to mixing being driven by the vertical 
component of gravity, similar to the one-dimensional test problem above. 

The physical motivation for this problem comes from the 'tilted' Rayleigh-Taylor mixing 
experiments of Andrews and Spalding7 in which the two fluids are brine and water and the overturning 
motion is initiated by quickly inverting a tilted two-dimensional tank. 

The governing equations to be solved for this problem are equations ( l H 3 )  with the components of 
the body force given by Bi, = -pig sin fl and Biy = pig sin fl for i = 1 and 2, water and brine 
respectively. The tilt angle fl is taken as 3" to conform with the experimental work and the densities are 
p1 = 1 x lo3 kg m-3 (water) and p 2  = 1.1 x lo3 kg mP3 (brine). The interphase friction term is 
again F = CEfLfp,, with Cf = 20.0. 

The initial conditions are u1 = u2 = v1 = v2 = 0.0 for 0 5 x 5 XL and 0 I y 5 YL, with the 
domain dimensions taken from the experiment, XL = 0.25 m and YL = 0.36 m. Pressure takes a 
hydrostatic distribution and the volume fraction field is given by 

1 if 0 d y < Y L / ~  and 0 d x d XL, 
f i = {  0 if Y L / ~  < y  < YL and 0 d x d XL. 

The boundary conditions are as follows: at x = 0 and x = XL, u1 = u2 = 0.0; at y = 0 and y = YL, 
v1 = v2 = 0.0. 

The overturning motion is generated by a Rayleigh-Taylor perturbation of wavelength ~ X L  and the 
e-folding time is then 0.4 s. This result will be used to compare with the growth of the perturbation 
taken as the contourfi = 0.5. 

Computational details 
A reduced pressure form of the gravity terms has been used with B1, = B1, = 0, 

B2, = - ( p 2  - pl)g sin fl and BzY = ( p 2  - pl)g cos fl. A total of 160 uniformly spaced cells were 
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used, with 10 in the x-direction and 16 in the y-direction. The time step was 0.02 s, since the maximum 
velocities in this problem are similar to those of the Rayleigh-Taylor problem. 

The initial velocities were zero with a hydrostatic pressure and the initial volume fractions were 

if 0 < y < Y L / ~  and0 < x < X,, ’ = {  lop3 i f Y L / 2 < y d Y ~  a n d O < x < X L ,  

Boundary conditions were set by specifying zero mass and momentum fluxes over the domain 
boundaries. 

The problem is expected to have similar velocities and volume fluxes to the Rayleigh-Taylor 
problem and so convergence of the pressure iteration calculation was determined by setting a total 
volume residual of lop4. 

1 - 

Results 
Figure 10 shows the development of the overturning and also the expansion of a mix region between 

the two fluids computed using the second-order scheme. This computed result agrees qualitatively with 
the observations of Andrews and S~alding.~ The e-folding time was determined from the amplitude of 
the perturbation at t = 0.1 and 0.2 s as 0.39 s, in good agreement with the expected value of 0.4 s. 
Figure 11 shows that the second- and higher-order schemes again have similar accuracy and are 
substantially more accurate than the first-order scheme. 

CONCLUSIONS 

New procedures have been described for solving phase volume and momentum transport in one- and 
two-dimensional two-phase flow. The procedures use an explicit formulation that permits the use of 
Van Leer limiters with higher-order representation of fluxes, thus preventing non-physical oscillations. 

Four test problems have been presented and solved with the new solution procedures. The test 
problems have been used to demonstrate that the solution procedures work correctly. It has been shown 
that an upwind, first-order scheme results in significant numerical diffusion. The numerical diffusion is 
substantially reduced upon using a second-order scheme, but little further improvement is achieved 
with a third-order scheme. The two-dimensional single-phase problems have shown the need for high- 
order momentum advection to prevent strong numerical damping of the computed solution. 

The use of a high-order volume fraction and momentum advection calculation is recommended 
when solving the equations of transient two-phase flow and the present Van Leer limited schemes work 
well. 

fl  = 0.2 
f l  = 0.5 

t = 0.5 s t= l .Os  t = 1 . 5 s  1 = 2.0 s 

Figure 10. Computed tilted cavity problem using second-order volume fraction and momentum schemes 
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Figure I 1. Tilted cavity first-phase volume fraction contours computed at f = 2 s with different schemes 
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APPENDIX: NOMENCLATURE 

body force for phase i in the x-direction 
interphase friction coefficient 
maximum Courant number for calculation based on E,, = v"",dAt/& 
volume fraction of phase i 
interphase friction 
gravitational acceleration, --9.8 1 m s-* 
pressure 
denotes centre of scalar cell 
time and time step (s) 
x-direction velocity (m s-*j  
y-direction velocity (m s-') 
volume (m3) 
x-co-ordinate and size of computational cell in x-direction (m) 
length of calculation domain in x-direction (m) 
y-co-ordinate and size of computational cell in y-direction (m) 
length of calculation domain in y-direction (m) 
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